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We report results from microgravity experiments on thermocapillary convection in
open annuli with outer radius Ro = 40 mm and inner radius Ri = 20 mm of various
aspect ratios Ar. The measurements are from more than 230 equilibrated states
in the Ar–Marangoni-number space. We found time-independent and oscillatory
states and report some selected oscillation and Fourier spectra from thermocouple
measurements. We measured the critical temperature difference �T c for the onset of
temperature oscillations in the range 1 � Ar � 8. We report supercritical oscillation
periods and attribute the oscillations in the larger Ar range to hydrothermal waves.
This conclusion is supported by the values of the oscillation periods and of the
critical Marangoni numbers in that Ar range. The hydrothermal waves exhibit an
internal corotating multicellular pattern. For the smaller Ar and near the threshold
we report m-fold temperature patterns on the free surface with m decreasing for
decreasing Ar. At 4�T c these patterns become very irregular. Most of the findings
are in accordance with the numerical results reported in Part 2 (Sim et al. (2003)).
The experimental �T c are higher and the experimental periods τ c are smaller than
the numerical values for Biot number Bi =0. However, analysis of the experimental
free-surface thermal boundary conditions shows that there was heat input to the free
surface. Good agreement with numerical results for �T c and τ c is obtained with
Bi �= 0 (heat input).

1. Introduction
Fluid flow in the melt in a crucible from which a single crystal is grown by

the Czochralski technique affects the crystal quality; for example time-dependent
flow can result in inhomogeneous doping, reflecting this time-dependence by dopant
striations. The main convective forces are (i) buoyancy, (ii) thermocapillarity and
solutocapillarity, (iii) forced convection by crystal or crucible rotation, (iv) electro-
magnetic stirring, and (v) forced convection by crystal vibration. Forces (iii)–(v)
are intentional whereas (i) and (ii) are inherent to the technique. The main
aspects of the Czochralski technique are treated in Hurle & Cockayne (1994) and
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thermocapillarity in crystal growth is dealt with in Schwabe (1988) and Kuhlmann
(1999). Thermocapillarity is intimately coupled with buoyancy in the Czochralski
system; there is heating from the outer wall and cooling in the centre and thus
thermocapillarity is generated at the free upper annular melt surface. The horizontal
radial temperature gradient gives rise to buoyancy as well. Because of this complexity
we undertook an experiment under microgravity in a Czochralski-like configuration
to study the flow structure of pure thermocapillary flow. The similarities between the
Czochralski system and the present experiment can best be seen in figure 1 of Part 2
(Sim, Zebib & Schwabe 2003). The aspect ratio, the main geometry and part of the
thermal boundary conditions are similar. Differences are found in the inner cooled
wall, in the menisci at the outer and the inner walls, and in the thermal boundary
conditions at the free surface which are strongly non-adiabatic for high-temperature
melts.

A few attempts to study experimentally thermocapillary flow in an annular
configuration under normal gravity and under microgravity have already been
made. The first experimental work in shallow annular gaps to verify the theory
by Smith & Davis (1983) was done by Schwabe (1984) and Schwabe et al.
(1992); hydrothermal waves and surface waves were observed. Several experimental
results on thermocapillary instabilities in open cylindrical containers are available.
Thermocapillary instabilities in cylindrical vessels heated by a central cylinder with
an aspect ratio near that of a Czochralski system have been reported by Kamotani,
Lee & Ostrach (1992) and Favre, Blumenfed & Daviaud (1997). Some of this work is
summarized in Busse, Pfister & Schwabe (1998). This Earth-bound work was limited
to liquid heights H � 3 mm to reduce the influence of gravity. Because this cannot
be avoided entirely and will be significant for H> 3 mm we planned our experiment
under microgravity with larger H, the results of which are reported in this paper.

The recent microgravity experiment by Kamotani, Ostrach & Masud (2000) was
similar to ours but used smaller and comparatively deeper containers and a higher-
Prandtl-number fluid. In their experiments Ar =(Ro − Ri)/H< 1 whereas ours were
in the range Ar � 1. From Smith & Davis (1983), Schwabe et al. (1992) and Riley &
Neitzel (1998) it is known that the dimensional wavelength of the hydrothermal
waves λ is 2.6H . This means that only very few wavetrains in the azimuthal or radial
directions can exist in an experiment with small Ri/H; the system will be ‘frustrated’,
resulting possibly in a higher critical Marangoni number Ma c. The strategy for our
microgravity experiment was to ensure (at least in some experiments with small H)
that the expected wavelength λ would be much smaller than 2πRi and smaller than
(Ro – Ri); this would allow unhindered wave propagation in all directions and would
make possible direct comparison with the existing theory for infinitely extended layers
by Smith & Davis (1983). Deviations can be expected due to the radial symmetry of
our experiment. We then proceed to experiments with higher H which is on the one
hand the parameter region with strong influence of gravity on Earth and therefore
normally not accessible, and on the other hand relevant to Czochralski crystal growth.
The Czochralski growth situation is not comparable to extended layers and it is most
likely that, due to the constraint Ar ∼ 1 in this technique, thermocapillary structures
other than hydrothermal waves will develop.

In contrast with Kamotani et al. (2000) who used a silicone oil with Prandtl number
Pr= 27 in their experiment, we used the silicone oil with the lowest viscosity (0.65 cSt,
Pr= 6.8) and are thus in the parameter region of important oxide melts and fluoride
melts. The use of the highly volatile 0.65 cSt silicone oil posed an experimental
problem, but this was overcome as discussed in detail below.
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2. Experimental
The experiment MAGIA (Marangoni Grown Instabilities in an Annulus) was

conducted on board on the Russian satellite FOTON-12 in September 1999. MAGIA
was operated for 4 days under microgravity. The operation was mainly automatic.
The free surface of the annular gap was observed with a normal CCD camera under
diffuse illumination. The temperature at the free liquid surface was imaged by an
IR camera. Temperatures were measured with fine thermocouples at five different
locations in the fluid of the annulus.

We present the experimental results in dimensional form but in discussions and in
comparison with Part 2, we use the following non-dimensional numbers:

Prandtl number Pr = ν/α,

Reynolds number Re = γ
�T H

νµ
,

Marangoni number Ma = Pr Re= γ
�T H

αµ
,

Rayleigh number Ra =
g0βD3�T

αν
,

dynamic Bond number Bodyn = Ra/Ma =
gβρD3

γH
,

aspect ratio Ar =(Ro − Ri)/H,

where ν, α, µ, γ , β , ρ, g0 are kinematic viscosity, thermal diffusivity, dynamic viscosity,
negative temperature derivative of surface tension, volume expansion coefficient,
density and normal Earth gravity. Ro and Ri are the outer and inner radii of the
annular gap, H is the liquid height in the gap and �T is the temperature difference
applied between the outer and inner walls. The residual gravity is g and D is the
appropriate dimension in the direction of the residual gravity vector.

2.1. The annular gap experiment MAGIA

A sketch of the experiment MAGIA is given in figure 1. The vertical cross-section
through the rotationally symmetric experiment chamber shows the annular gap
with Ro = 40 mm and Ri = 20 mm. The gap length L =Ro − Ri = 20 mm is fixed.
The differentially heated (cooled) sidewalls are made of aluminium. The thermally
insulating bottom of the gap was adjustable to liquid heights H, 2.5 mm � H � 20 mm,
and the injection (or retraction) of liquid was synchronized with the H-changes to
ensure a ‘flat-filled’ gap (plane free surface and virtually no meniscus at the rim of
the gap). An extra adjustment of the filling level by telesupport was possible and
was carried out. The rims of the gap were sharp and their upper surface was painted
with FC 725 from 3M-Company to avoid wetting by the oil and consequent capillary
outflow under microgravity. A ZnS window allows the optical observation of the
free surface of the gap from above and of its temperature distribution with an IR
camera. The main experimental difficulty was the high vapour pressure of the 0.65 cSt
silicone oil, comparable to that of pure ethanol. Without countermeasures all the
liquid would have evaporated in typically 1–4 h and ‘liquid bridges’ of condensed oil
could give rise to capillary outflow. We therefore heated all outer walls including the
ZnS window to a temperature TW of 30 ◦C, well above the temperature of the cooled
inner cylinder, Ti . Thus all condensation of evaporated oil occurred at the top of
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Figure 1. Sketch of the experiment MAGIA. The aspect ratio Ar= (Ro − Ri)/H of the annular
gap can be changed between 8 and 1 by adjusting H with a movable bottom. The free surface of
the liquid was maintained flat by appropriate injection/retraction of liquid. Evaporated liquid
condenses on the cold central cylinder and flows back into the gap through four channels due
to capillary pressure.

Kinematic viscosity ν 6.5 × 10−7 m2 s−1

Thermal diffusivity α 9.5 × 10−8 m2 s−1

Prandtl number Pr 6.8
Surface tension σ 15.9 × 10−3 N m−1

Temp. dependence of surface tension ∂σ/∂T −6.4 × 10−5 Nm−1 K
Density ρ 760 kg m−3

Temperature dependence of ρ 1.34 × 10−3 K−1

Vapour pressure at 20 ◦C 2.6 × 103 N m−2

Table 1. Physical properties of the silicone oil Si(CH3)3–O–Si(CH3)3 at 25 ◦C.

the cold inner cylinder. There the condensed oil could accumulate a spherical section
and flow back into the gap through four capillaries with wicks. The wicks were found
to be mandatory for the filling of the capillaries from tests during parabolic flights.
For the wick we used platinum wire 0.3 mm in diameter, touching the top of the cold
cylinder. Due to surface tension there is a positive pressure in the spherical ‘hat’ and
a slightly negative pressure in the gap due to its negative surface curvature when
slightly underfilled. Thus the system is ‘self-replenishing’ and worked for days.

The relevant physical properties of the 0.65 cSt silicone oil are given in table 1. The
mean temperature was held constant at (To + Ti)/2 = 25 ◦C.

2.2. Accuracies, limitations and the microgravity environment

The mechanical accuracies (proportions, parallelism of the bottom to the upper rim)
of MAGIA were of the order of 0.01 mm. The underfilling was 1 cm3, corresponding to
a depression in microgravity of only 0.05 mm in the middle of the gap at (Ro + Ri)/2.
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H (mm) Bodyn =
gβρ27(Ro − Ri)

3

γH
Bo∗

dyn =
gβρ27(Ro − Ri)

4

γH 2

2.5 0.14 1.09
10 0.034 0.069
20 0.017 0.017

Table 2. Dynamic Bond numbers for three different values of H .

The temperature constancy of both sides To and Ti was such that the important
temperature difference parameter �T = To – Ti was constant within ± 0.07 K after
thermal equilibrium was reached. The �T values given as integers in the text and
most figures (except figure 9 ‘critical �T = −�T c’) are the values calculated from the
set point temperatures. The measured �T from sensors integrated into the sidewalls
of the annulus are smaller by δ�T. For H= 2.5 mm and �T = 2 K δ�T is 0.15 K,
increasing linearly to δ�T = 0.3 K for �T= 40 K. For H =20.0 mm and �T= 2 K,
δ�T = 0.25 K and for �T= 40 K, δ�T = 0.45 K. Regular temperature oscillations due
to oscillatory flow with an amplitude of 0.15 K were easily detected with the 0.25 mm
diameter thermocouples in the liquid. The noise level of the amplified thermocouple
signals was ± 0.05 K. The IR-camera had a temperature resolution of 0.1 K.

The accuracy of the microgravity level and the direction of the residual gravity
during the flight are not known but a recent analysis showed that there were variable
gravity disturbances of the order of 10−5g0 during the flight of FOTON-12 (Sheftsova,
Melnikov & Legros 2002). By far the largest gravity component occurred in the radial
direction of MAGIA. The variation of this gravity component during flight inferred
from the IR-pictures is documented in Schwabe & Benz (2002). For the worst case,
estimates of the dynamic Bond number Bodyn, relating the influence of residual gravity
g = 10−5g0 in the radial direction and the influence of thermocapillary forces, are given
in table 2 for three different liquid heights. The dimension D in the Rayleigh number
was taken as 3(Ri − Ro) to account for the geometry of the annular gap. A physically
more relevant estimate of the thermocapillary effect can be made and is based on
a different definition of the Marangoni number M∗ = γ�T H 2/[(Ro − Ri)αµ] as in
Smith & Davis 1983. The values of Bo∗

dyn = Ra/M∗ are given in table 2 as well.
The IR-camera detected non-rotationally symmetric temperature distributions on

the free surface during many measurements (see one example in figure 12d) which
can be explained by a radial gravity component.

2.3. Measurement procedure

The measurements under microgravity proceeded as follows: a liquid layer depth
H was installed and then different temperature differences �T were realized for
approximately 15 min each. These periods are called steps. During at least the last
6 min of each step the fluid system was in equilibrium; thermal equilibrium was
typically reached 10 min before the end of the step. We took measurements of
230 different steps distributed in the parameter range 1 K � �T � 40 K and 2.5 mm �
H � 20.0 mm. Temperature measurements with five thermocouples in the liquid, placed
1 mm below the free surface, were taken with a sampling frequency of 20 Hz during
the last 6 min of each step. The thermocouple tips were located in different positions
at (r = 24 mm, α =0◦), (r = 30 mm, α = 0◦), (r = 34 mm, α = 0◦), (r = 30 mm, α = −17◦),
(r = 30 mm, α = +5◦) to resolve by correlation analysis the wavy character of the
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Figure 2. Temperature oscillations near the threshold. (a) H = 2.5mm, �T = 4 K, (b) H =
6 mm, �T= 2 K, (c) H = 20 mm, �T = 4 K. The typical noise level of the oscillation signal
is ± 0.1 of the arbitrary temperature scale. The absolute maximum peak–peak amplitude is
approximately 0.5 K in (a), 0.7K in (b) and 0.8K in (c).

oscillations. The azimuthal position α = 0◦ corresponds to θ = π in Part 2. The IR-
pictures were taken with 15 Hz during the final 5 s of each step.

3. Experimental results and discussion
We expect to observe oscillatory flow states corresponding to the hydrothermal

waves in the flat annular gaps (small H or large Ar and Ro ≈ Ri) because the
return flow solution of Smith & Davis (1983) applies in this case. For smaller Ar
different oscillatory states may occur. Thermocouple data are best suited in this
experiment to characterize the temporal structure of the flow states and to determine
the transition from time-independent to oscillatory flow. They are presented first.
Then the structure of supercritical flow states as detected by the IR-camera from
temperature distributions at the free surface is discussed. Finally we present and
discuss some deviations from ‘ideal’ boundary conditions for a quantitatively more
satisfying comparison of the experimental results and the numerical simulations in
Part 2.

3.1. Characterization of flow states by thermocouple measurements

Among the 230 flow states (measurement steps) realized in the H–�T range, seven
were time-independent because the applied temperature difference �T was only 1 K
and thus below �T c. For all other steps with �T � 2 K the flow was oscillatory in
the whole H range (except one measurement with H= 2.5 mm and �T= 2 K).

Figure 2(a–c) shows three examples of the temperature–time signal near the
threshold for the liquid heights H= 2.5 mm and �T= 4 K, H= 6.0 mm and �T= 2 K,
H= 20.0 mm and �T= 4 K. In these examples, the oscillations are well above the noise
level which is in a much higher frequency band, best seen in figure 2(b). In figure 2(b)
the oscillations have a period τ of approximately 40 s at the end of the measurement
time with a peak–peak amplitude of approximately 1.5, whereas the noise has a peak–
peak amplitude of 0.2 on the relative temperature scale. Microgravity disturbances in
this frequency band can be excluded as the cause of such oscillations. The oscillations
are regular only for the smaller H and small �T (figure 2a) and one can expect
to extract a well-defined period τ or frequency f and Fourier amplitude from such
a signal. The temperature–time trace in figure 2(c) with H= 20 mm and �T= 4 K
(aspect ratio Ar = 1) is taken at roughly two times the critical Reynolds number
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Figure 3. Fourier spectra of the thermocouple located at r =34mm, α = 0 for H = 3.0 mm
and �T =2K (· · · · · ·), �T =5 K (-----), and �T =8K (—). The corresponding Fourier peaks
of the main frequency have amplitudes of 18.2, 970, and 5100, respectively.

Rec and is considerably more irregular than the equivalent case in the numerical
simulation (Part 2, figure 3). This is typical for larger H and �T. But the irregularities
of the temperature signal in figure 2(c) are not due to external disturbances.

The decrease in the frequency f with increasing H is also seen in figure 2. Here
figure 2(b) is a special example of extremely low f for H= 6.0 mm, most probably due
to �T= 2 K being extremely near to the threshold �T c. Figure 3 shows the Fourier
analysis of the signals from the thermocouple placed at r = 34 mm and α =0 for
H =3.0 mm and the three temperature differences �T= 2 K, 5 K and 8 K. The main
oscillation frequency is well defined and increases with �T from 0.071 Hz to 0.171 Hz.
The Fourier amplitude increases from 18.2 to 970 up to 5100. With increasing �T the
spectra become more complex. Regular oscillations are found only for H � 6.0 mm.
For H> 6.0 mm the temperature signals are more irregular, even near the threshold
(figure 5). Figure 4 shows the Fourier spectra of the three thermocouples at the
same azimuthal position α = 0◦ but different radial positions for the experiment with
H = 4 mm and �T= 2 K. We note that the Fourier amplitude A decreases from
the inner cold wall (r = 24 mm, A= 480) towards the middle of the gap (r =30mm,
A= 230) and to the outer hot wall (r = 34 mm, A= 110). This is an indication that the
wave is travelling towards the hot wall as is the case for hydrothermal waves (Smith &
Davis 1983); because we are near the threshold the wave might be excited only near
the cold side. The same is observed in the simulations (Part 2, figures 7, 8, 9, 11, 12,
14). The more irregular oscillation spectra at higher supercritical Reynolds numbers
are found in the smaller Ar range rather than in the larger range, both experimentally
and numerically. In the range of larger Ar one can argue that the return flow
solution of Smith & Davis (1983) no longer applies and a flow structure different
from hydrothermal waves is established. For Ar =1 the structure of the steady flow
observed in the gap (Part 2, figure 17a) is very different from the simple return flow
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Figure 4. Fourier spectra for the same conditions H = 4 mm, �T = 2 K and α = 0 but from
different radial positions. —, r = 24 mm; ----, r = 30mm; · · · · ·, r = 34mm. The peak amplitudes
decrease from inside to outside in the proportion 480 : 240 : 115.

(Part 2, figure 17d). In an earlier microgravity experiment with a rectangular gap
with Ar =1 (H= L = 2 cm) time-dependent streaklines and a non-harmonic spectrum
of temperature oscillations (Metzger et al. 1994) were observed, very much like the
oscillation spectrum observed here in the annular gap. This and our observations
indicate that the instability in the smaller Ar range is different from hydrothermal
waves.

The thermocouples were placed to allow the extraction of the wavelength λ and
phase velocity v, in the case of wavelike disturbances, by a correlation analysis of
their signals. A wave crest would be detected earlier in time by the thermocouple
at (r = 24 mm, α =0◦) than by that at (r =30mm, α = 0◦) if the wave travels
(partially) radially outwards. A prerequisite of the correlation analysis is well-defined
temperature oscillations for all five thermocouples. The Fourier spectra must show the
same peak to ensure a wave like disturbance. This was the case in the majority of steps
near �T c but not for the steps with �T much larger than �T c. Even so, the signals
can be interpreted as being caused by a travelling or a standing wave. The correlation
analysis of the signals from different thermocouples showed that the flow state of
travelling waves is a rare exception in the investigated parameter range. A correlation
analysis of the data from the steps with H= 2.5 mm and with H = 3.0 mm, �T= 4 K
(figures 2a and 3) was possible in terms of the quality of the signals at all five
thermocouples, and the Fourier spectra were the same at all five locations. With the
unequal spacing of the thermocouple positions an unequivocal check for travelling
waves is possible. But the correlation analysis of most steps did not fit what would
be expected for travelling waves. A further confirmation for the absence travelling
waves in some steps comes from the fact that the oscillation spectra from different
locations are qualitatively different or quantitatively very different. Figure 5 shows
such a temperature–time trace for H= 6.0 mm and �T= 5K with oscillations typical
of the larger H and larger �T. These experimental findings show that the wavy
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Figure 5. Temperature–time signal (smoothed) for H = 6.0 mm and �T = 5 K from the
thermocouple placed at r = 24 mm, α = 0.

disturbances are either travelling waves or standing waves or waves travelling from
a source in opposite directions and interfering in the opposite region of the annular
gap, as observed by Schwabe (1999) in the larger Ar range. The reason for the
waves appearing often as standing or counterpropagating ones could be residual
gravity, e.g. with a component in the radial direction. But the same irregularities
have sometimes been observed in experiments under normal gravity, which have been
levelled precisely, showing that the system is prone to such ‘defects’. Nevertheless we
can report three cases with travelling waves; a case for H=6.0 mm with �T=2 K
with a wave travelling only radially but not azimuthally (a standing wave like in
Part 2 figures 12 and 13). In another case with Ar = 5 the correlation analysis of
the thermocouple signals from different azimuthal positions indicates an azimuthally
travelling pattern with mode m=8 (eight wavetrains in the azimuthal direction) and
a rotational speed of 0.2◦ s−1. For Ar = 1 we found an azimuthally travelling pattern
with m between 5 and 6 and an angular speed of (0.75 – 0.84)◦ s−1. The mode m
found in the latter case is roughly comparable with the temperature pattern at the
free surface visualized by the IR-camera (figure 12a).

3.2. Observed critical and supercritical frequencies

We now examine the problem of identifying the oscillatory state. Did we observe
hydrothermal waves under microgravity? This question might be answered by
comparing the frequencies and the wavelengths of the observed structures with
the predictions. Figure 6 shows the periods τ of the oscillations at approximately
2Ma c for various H. The period shows a strong increase with increasing H, close
to that expected for hydrothermal waves in infinitely extended layers for H � 10 mm
(Schwabe et al. 1992; Riley & Neitzel 1998) and less strong for the higher H. The
observed period is always greater than that expected for surface waves (Smith &
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Figure 7. Dependence of the oscillation frequency f on �T for various H as recorded with
the thermocouples.

Davis 1983). The scatter in the data is considerable and an agreement with the
properties of hydrothermal waves is indicated but not very strongly.

The uncertainties in the period τ in figure 6 have various causes (in order of
importance):

(i) We plot here τ near the threshold (�T =3K to 4K) but we do not have
measurements for all H at exactly the threshold. Yet the frequency f can depend very
strongly on �T as shown in figure 7.
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(ii) The Fourier spectra showed more than one frequency peak or broadened
peaks.

(iii) The Fourier spectra of the five thermocouples sometimes differ though they
are taken at the same time.

The measurement points marked by circles in figure 7 are taken at �T= 2 K to
3 K, close to the threshold and display a significantly increased period. Figure 6 is
a further hint that the instability is of hydrothermal-wave type for H � 5 mm and
probably of another type for H � 8 mm. We arrived at a similar conclusion in the
discussion of the quality of the Fourier spectra and the basic flow structure in the
preceding section.

Assuming a linear dependence of f on �T, the frequency f c at the threshold
�T c ∼ 1.5K can be extrapolated in figure 7 for the five smallest values of H; f c

decreases with H as expected.
The increase of f with �T is roughly the same for all H in the displayed range

up to 5�T c (figure 7). The constant c in f = a + c�T is the same for all H. On the
other hand f =Fγµ−1H −1�T with the non-dimensional frequency F defined in Part 2.
According to figure 6 in Part 2, F is quite independent of �T for H= 20 mm in the
supercritical range up to 8Rec. Therefore from figure 7, F(H)/H ∼ constant. This is
indeed the case for Bi= 0 (Part 2, figure 19b).

But the measured critical periods are considerably below the numerical ones (Part 2,
figure 19b) with a constant negative offset for all H. Is this offset due to Bi �=0? It
will be shown in § 3.5.2 that there was surface heating in our experiment, giving rise
to Bi �=0. When this value of Bi �=0 is taken into account in the numerical simulation
(Part 2, figure 20) good agreement for τ and for Ma c is obtained.

3.3. Measurement of the critical temperature difference for the onset of oscillations

For all H realized we have some measurements of the temperature oscillation
amplitude A in the supercritical �T range not too far above the threshold, and
for some H we realized flow states �T< �T c with A=0. Assuming a classical Hopf
bifurcation, �T c can be found by a linear extrapolation of A2(�T) towards zero.
From the examples in figure 8 one can expect a critical temperature difference �T c

around 2 K under microgravity in the investigated Ar range (figure 9). Besides this,
we see an increase in �T c towards H= 2.5 mm and a minimum in �T c around
H = 4 mm to 6 mm, corresponding to Ar = 5 to 3.3. This minimum is also found in
the numerical results (Part 2, figure 19a) as a break in the curve Rec(Ar). Because
Rec ∼ H, the minimum in Rec(Ar) is not as obvious as the one in the plot of �T c(H ).

The �T c values of figure 9 partly contradict the two independent two-dimensional
numerical analyses for a fluid of almost identical Prandtl number by Peltier & Biringen
(1993) and Xu & Zebib (1998); there the flow is found to be always stable for Ar < 2.3
and a double value for the transition steady ↔ oscillatory is indicated e.g. for Ar = 2.5.
This does not describe the three-dimensional reality as shown in figure 9; the flow
becomes oscillatory in the stability region of two-dimensionl simulations. Since Ro

does not exceed Ri by very much in our cylindrical geometry the results of the
two-dimensional case should be approximately applicable. Further evidence against
the two-dimensional numerical result comes from a sounding rocket experiment on
thermocapillary convection in a rectangular gap with aspect ratio Ar = 1 (Metzger
et al. 1994). These authors found rather chaotic temperature oscillations at comparable
�T and Re in their experiment. Oscillations in cylindrical containers with Ar < 1 were
also found under microgravity by Kamotani et al. (2000). This discrepancy between
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Figure 9. Critical temperature difference �T c for the onset of temperature oscillations for
various liquid heights H .

two-dimensional simulation and the experiments shows the need for three-dimensional
numerical simulations of this system, which are performed in Part 2.

The deviation of the three-dimensional numerical results in Part 2 from the
experimental ones is almost the same for Ar = 8 as that of the two-dimensional
results but significantly larger for Ar =1 (Part 2, figure 19a). As shown in § 3.5.2 of
this paper and in Part 2 this discrepancy disappears when some heating of the surface,
as occurred in the experiment, is taken into account.
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We now compare our experimental microgravity results with those from Kamotani
et al. (2000). These authors used much smaller containers with Ar < 1 in all cases,
Ri/Ro = 0.1, Pr= 27, and heating of the inner cylinder. The heat source was more
point-like than wall-like as in our case. For the Ro = 6 mm container their Mac was
roughly twice ours and 2.5 times as high for the Ro = 15 mm container. Extrapolating
the data of figure 13 of Kamotani et al. (2000) to Ro = 80 mm, one can predict
for MAGIA a critical Marangoni number which is three times larger than actually
measured by us. Taking into account that the onset of oscillations was estimated by
Kamotani et al. (2000) from observations of the IR pattern at the free surface by eye,
their value must be too high because it could not be extrapolated to zero since the
‘signal-values’ are only qualitative. But the Mac from Kamotani et al. (2000) supports
the order of magnitude of ours, at least in the Ar =1 range.

Ground-based experiments on shallow layers (Schwabe et al. 1992; Villers & Platten
1992) report an increasing �T c for hydrothermal waves (or oscillatory states) with
increasing H. The same is true for the travelling waves reported by Daviaud & Vince
(1993). Unlike to these observations at normal gravity, we find a minimum in �T c

around H= 4mm to 6mm (which is near the maximum H investigated on the ground)
and we do not find the increase in �T c(H) predicted by Villers & Platten (1992).
Thus we conclude that there must be a strong buoyancy influence on �T c under
normal gravity with H exceeding 2 mm.

3.4. Flow structures detected by the IR-camera observing the temperature
distribution at the free surface

Due to limitations of the data storage capacity only 5 s of each measurement step (H ,
�T ) were observed by the IR-camera. Because of the significantly larger period τ of
the movements at the free surface no full period was observed. But the partial motion
and the dynamics of the free-surface temperature distribution at higher supercritical
Re are visible during these 5 s.†

The temperature patterns at the free surface are most impressive for the larger �T ;
in these cases the temperature resolution of 0.1 K of the IR-camera was sufficient.
The noise in the IR-pictures can be averaged out by integrating over 1 s to 5 s. This is
feasible for the smaller Ar and �T because the frequencies of the oscillations are low
enough. The temperature patterns at the free surface are displayed in false colours
(without any further manipulation) in the following figures.

3.4.1. Multicells observed with the IR-camera

Figure 10 shows the IR-picture from the free surface for H= 2.5 mm and �T= 6 K.
The window heater is glued slightly eccentrically to the ZnS window with the leads
coming from about 9 o’clock. The central blue part is the top of the cooled inner
cylinder with 40 mm �, partly visible under the dark red window heater which has a
smaller diameter. Three concentric rings of almost homogeneous temperature fill the
20 mm gap (figure 10). The interface between the inner and the middle ring is not
as sharp and circular because for �T= 6K the system is already oscillatory and the
hydrothermal waves are strongest near the cold wall. All 75 IR-images of this step
have been averaged in figure 10. The three concentric rings of approximately the same
thickness are due to the multicellular structure already observed in shallow layers
at normal gravity by Villers & Platten (1992), Schwabe et al. (1992), De Saedeler

† Two example video clips can be downloaded from the web: http://meyweb.physik.uni-giessen.
de/meyer/crystalgrowth/video/homepage.html.
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Figure 10. Averaged infrared pictures of the temperature distribution at the free surface for
H = 2.5 mm and �T= 6 K. Three concentric multicells fill the gap.

et al. (1996), Favre et al. (1997) and Riley & Neitzel (1998) who report stationary
multicells. Under microgravity we find that multicellular flows are oscillatory. The
multicell structure (MCS) and the hydrothermal waves can coexist up to at least 4Rec.
Our observation of three cells for H= 2.5 mm and 2 cells for H= 3.0 mm indicates
the relation λ≈ 3H for the wavelength λ of the MCS. This is in good agreement with
the observation of the multicells in shallow layers at normal gravity and with the
numerical results in Part 2, figure 18(c, d).

Both, the MCS and the wavy states seem to occur at nearly the same Rec under
microgravity. This result differs from that of Earth-based experiments with the same
silicone oil by Favre et al. (1997) who report a separation of these states by 1K to
2K. We have enough data to exclude this separation under microgravity.

We add that we could not observe longitudinal stationary rolls (axis parallel to
the temperature gradient) as reported by Daviaud & Vince (1993) and later analysed
by Mercier & Normand (1996). Mercier & Normand show that the longitudinal
rolls appear under a dominating buoyancy effect which was not the case in our
microgravity experiment. When we operated MAGIA under normal gravity with
otherwise unchanged conditions we could clearly observe the longitudinal rolls as a
‘spokes pattern’ for H � 6mm and the longitudinal rolls appeared down to H= 2 mm
in a recent experiment with rectangular configuration in normal gravity (Benz &
Schwabe 2001).

3.4.2. Temperature pattern at the free surface

The best examples of observed temperature patterns at the free surface are presented
in figures 11 and 12 and compared with results from Part 2. Many of the other IR-
pictures are spoiled by temperature asymmetries due to residual gravity as discussed
below. Figures 11(a) and 11(b) show the temperature distributions for H= 20 mm at
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Figure 11. Averaged infrared pictures of the temperature distribution at the free surface for
H = 20 mm showing fivefold symmetry m= 5 for the smaller �T. (a) �T = 4 K, (b) �T = 8 K.

�T= 4 K and �T= 8 K. �T= 4 K corresponds approximately to 2Rec and a fivefold
temperature pattern is visible as in figure 4 of Part 2. The experimental pattern is more
irregular than the corresponding numerical one at this Re. The irregularities in the
fivefold pattern are definitely not due to an insufficient resolution of the IR-camera
and are much stronger than in experiments at normal gravity (the same is true for the
thermocouple signals). The frequency spectrum of these irregularities is higher than
that of any time-dependent gravity disturbances during the flight. We therefore con-
clude that the irregularities are due to a slight symmetry breaking by residual gravity.

Figure 11(b) shows the surface temperature pattern for H= 20 mm at a high
supercritical Re at �T= 8 K.† The pattern is much more irregular than the
corresponding numerical ones, figure 4 in Part 2. It resembles more the standing
waves simulated for Ar = 3.33 at Re = 900 in figure 8(b) in Part 2. We know from
experimental experience with thin layers in annular gaps under normal gravity that a
small symmetry-breaking disturbance can produce counter-rotating (standing) waves
from a travelling pattern, and that this disturbed pattern can persist even after the
removal of the disturbance.

The number of waves m increases with decreasing H as shown in figure 12.
Figure 12(a) shows m =5 to 6 for H = 17 mm (Ar = 1.17) and �T= 4 K. Figure 12(b)
shows m ≈ 8 for H = 10 mm (Ar = 2.0) and �T= 6 K, and figure 12(c) shows m ≈ 11
for H= 8 mm (Ar = 2.5) and �T= 5 K. This is in good agreement with the numerical
results in Part 2, figures 4, 7, 8, 11. The experimental pattern is again faint as discussed
above but it is clearly visible that no pure wavetrains of a mode m have developed.
Instead disturbed wavetrains or standing waves are found. In Part 2, figure 8, it can

† The dynamics at higher �T can be seen at http://meyweb.physik.uni-giessen.de/meyer/
crystalgrowth/video/homepage.html in the files MAGIA Microgravity result.
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Figure 12. Averaged infrared pictures of the temperature distribution at the free surface for
various H showing the increase of m with decreasing H . (a) H = 17 mm, �T = 4 K, m ≈ 5−6;
(b) H = 10 mm, �T = 6 K, m ≈ 8; (c) H = 8 mm, �T= 5 K, m ≈ 10−11; (d) H = 2.5mm,
�T= 5 K, spiral structures between 10 o’clock and 13 o’clock.

be seen that for Ar =3.33 waves travelling from a ‘source’ in opposite directions can
have already replaced rotating patterns at Re =900. Consequently we cannot expect
to observe experimentally ordered rotating wavetrains in the gap with Ar =2.5 at
�T= 5 K.
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The fivefold surface temperature distribution (mode m =5) observed under
microgravity in our large Ar = 1 annulus compares well with earlier ground-based
observations by Kamotani et al. (1992) and Kamotani & Masud (1996) who reported
m = 2 and m =3 rotating (and sometimes pulsating) patterns in small annuli heated
from the inner wall with Ar < 1. Later, Kamotani et al. (2000) reported on rotating
and pulsating m = 2 modes and rotating m =3 modes from a microgravity experiment
with similar small annuli.

Figure 12(d) with Ar = 8 and �T= 5 K has three noticeable features. First, the
multi-roll structure is again indicated. Second, we can observe one of the strongest
hot–cold asymmetries found, pointing from about 2 o’clock towards 7 o’clock in
this case. A dark cold plume extends towards 7 o’clock, most probably because of a
residual gravity vector pointing in this direction. A main feature observed only for
very few steps is the ‘feathery’ temperature structure in the middle of the annular gap.
This is observed in the sector between 10 o’clock and 12 o’clock in figure 12(d). This
is an indication of ‘spiral arms’ (hydrothermal waves in an annulus) already observed
by Schwabe (1999) and Garnier & Chiffaudel (2001). It is clear that in the case of
hydrothermal waves a spiral-like wave pattern (Archimedian spiral) will develop in
annular geometry; for our liquid with Pr = 7 the waves start at the cold inner cylinder
with an angle β ≈ 60◦ between the wave vector k and ∇T and travel towards the outer
hot wall. ∇T is parallel to the radius vector. Because β is constant going outwards
the wavefront will cross different radius vectors. Thus the wavefront must become a
spiral. This is best seen in figure 11 of Garnier & Chiffaudel (2001) because they use
an annulus with a large Ro/Ri . In Schwabe (1999) the spiral pattern looks different
because of a reversed temperature gradient. In figure 16(b) from Part 2 one can count
20 spiral arms and the experimental estimate from the area with four faint spiral
arms in figure 12(d) gives (18 ± 1) spiral arms for the full azimuth. The wavelength
λ≈ 2.5H predicted by Smith & Davis (1983) and by Riley & Neitzel (1998) yields
20 to 21 spiral arms in the gap with Ar = 8 in the ‘source-region’ near the cold wall.
It is interesting that in the numerical results in Part 2 the spiral arm separation is
somewhat scattered and the spiral arm waves can travel counterclockwise in certain
regions. According to the simulations one cannot expect to observe ordered spiral
arms at 2Rec. Moreover, the wavetrains change either the number of waves or the
wavelength on their way to the outer region. In figure 11 of Garnier & Chiffaudel
(2001) it is seen that the spacing between the spiral arms increases towards the
periphery.

Our simple assumption λ≈ 2.5H for extended layers, near the cold wall, does not
hold for smaller Ar in annular geometry; for Ar =1 it predicts m = 2 to 3 whereas we
observe experimentally and numerically 4 to 5 waves.

3.5. Deviations from the ideal experiment

3.5.1. Residual varying gravity disturbances detected by the IR-camera

The IR-pictures shown are exceptions because they display an almost rotationally
symmetric temperature distribution in the gap (except for the dynamic structure due
to thermocapillary flow). Most IR-pictures from different Ar–�T conditions show a
hot–cold asymmetry in the gap as shown in figure 12(d). The dark area pointing
towards 7 o’clock in figure 12(d) is colder than the opposite side. We assume that
a significant component of the residual gravity points in this direction, which is
most likely from an analysis of the gravity disturbances (Shevtsova et al. 2002).
Thus we have a cold plume moving radially away from the cold cylinder against the
thermocapillary flow. This temperature asymmetry has never been observed in the
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normal gravity reference experiments with the same apparatus. Under normal gravity
conditions the experiment is oriented with its cylinder axis exactly parallel to the
gravity vector g0. The asymmetry observed under microgravity changes its direction
from time to time (Schwabe & Benz 2002), most probably due to the rotation of
the satellite. Obviously, there were only a few situations during our IR-observations
under microgravity with favourably low residual gravitation.

3.5.2. Non-adiabatic free surface, Bi �=0

It is not possible to realize exactly an adiabatic free surface (Bi= 0) in our
experiment and similar ones. Let us consider radiative heat transport, heat by
conduction and convection through the surrounding gas, and heat loss from the
free surface by evaporation of the liquid. We define the mean temperature Tm of the
liquid as Tm = (To + Ti)/2 = 25 ◦C. To is the temperature of the sidewall of the annular
gap, Ti the temperature of the cold central cylinder surface, and the temperature of
the ZnS window is Tw = 30 ◦C. The 2 cm wide gap between the liquid free surface and
the inner side of the ZnS window was filled with air at normal pressure. Radiative
heat transport between the various inner surfaces mentioned can be neglected in our
case.

Conduction and convection in the gas gap pose a bigger problem in our case
because δT = Tw − Tm = 5K. Convection in the gas gap is not negligible even under
microgravity because the streaming of the free surface will induce a parallel streaming
in the air. Thus in the air gap of MAGIA air will be transported along the liquid
surface towards the middle region, rise there, flow outwards along the ZnS window
and warm up, flow down the sidewall of the gap and then again flow along the free
surface. An analysis of the experimental conditions shows that in our case the free
surface of the oil is heated from the outside by this mechanism because δT �= 0. Let
us remark that significant heat exchange by this mechanism cannot be avoided for
liquids with Pr > 1 unless one works in vacuum. This is due to the fact that in our
case the liquid surface temperature Ts is inhomogeneous for Rec and, for most parts
of the surface (To + Ti)/2 < Ts � To.

From ground-based experiments on evaporation and condensation of the same
silicone oil under comparable conditions we can estimate the cooling of the free surface
due to evaporation (Hintz 1999; Hintz, Schwabe & Wilke 2000). The evaporative
cooling heat flux is qevap ≈ 4 W m−2 near the oscillation threshold. The conductive–
convective heating of the free surface by the hotter ZnS window is qadvect ≈ 10 Wm−2.
This was derived from an estimate of Nu ≈ 2 for the convective heat transport in
the gas gap near �T c. Thus the free surface is effectively heated by 6 Wm−2. From
the IR-camera measurement we know that the oil free surface has a temperature of
approximately 26 ◦C near �T c, which gives δT = Tw − Toilsurface ≈ 4 K. Accordingly the
heat transfer coefficient is h =1.5 Wm−2 K−1 and the Biot number is Bi= 0.3 for the
heat input to the free surface.

The use of Bi= 0.3 in the simulations gave good agreement with the experimental
Rec and τc (figure 20 in Part 2). Calculations with unrealistic and not justified high
cooling (Bi=20) only bring the numerical Rec and τc nearer to the measured values.

4. Summary and conclusions
Thermocapillary flow in open cylindrical annuli of various aspect ratios has been

investigated experimentally under microgravity. We report the critical temperature
differences �T c for the onset of oscillatory flow with a minimum around aspect
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ratio Ar = 4. The experimental values of �T c are larger and the experimental
oscillation periods near the threshold are smaller than the corresponding numerical
ones calculated for an adiabatic free surface. An analysis of the heat balance of the
free surface revealed heating of the surface by the hotter ZnS window above the
annular gap, and the numerical results for Rec and τc taking this into account are
close to the experimental ones.

Based on the measurements of the critical oscillation frequencies f c and
temperature pattern by an IR camera at the free surface, the oscillatory flow states
in the higher Ar range could tentatively be interpreted as hydrothermal waves (Smith
& Davis 1983). But the signals correspond more to standing waves than to travelling
waves. Furthermore, coincidence of multicells (multirolls) with the hydrothermal
waves was found in the large Ar range. In the range of small Ar we found m-fold
temperature patterns in the gap, e.g. m =5 for Ar =1, m decreasing with decreasing Ar.

In the supercritical range above 4Rec the IR temperature patterns and the Fourier
spectra from thermocouple measurements become more complex. The frequency f

as function of �T could be measured only in the range of higher Ar.
Both experimental and numerical results are very sensitive to heat input at the

free surface. The heat fluxes through the free surface need to be measured in future
experiments for accurate analysis. In crystal growth from the melt under microgravity,
and most probably under normal gravity as well, the critical Reynolds number can be
effectively increased and temperature oscillations with growth rate fluctuations and
growth striations can be effectively suppressed by additional heating of the melt free
surface.

This paper is dedicated to Professor Dr A. Scharmann on the occasion of his 75th
birthday.
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